To receive full credit, you must show all work.
Question 1 This is exactly problem 11 from section 2.2 in the book. Prove that a straight line is the shortest curve that joins two points in \mathbb{R}^{3}. Do this the following way: Let $c:[a, b] \rightarrow \mathbb{R}^{3}$ be an arbitrary curve from $p=c(a)$ to $q=c(b)$. Let $\mathbf{u}=(\mathbf{q}-\mathbf{p}) /\|\mathbf{q}-\mathbf{p}\|$.
a) Show that if σ is a straight line segment from p to q, say $\sigma(t)=(1-t) \mathbf{p}+t \mathbf{q}, 0 \leq t \leq 1$, then $L(\sigma)=d(p, q)$.
b) Cauchy-Schwartz implies that $\left\|c^{\prime}\right\| \geq c^{\prime} \cdot \mathbf{u}$. Use this to deduce that $L(c) \geq d(p, q)$.
c) Show that if $L(c)=d(p, q)$, then c is a straight line segment.

Question 2 Now we are going to investigate the same problem using the calculus of variations. Very often in math or physics, one is interested in minimizing or maximizing a functional. For our purposes a functional F will be a function from some set of functions to \mathbb{R}. These are often given by integrals. For example, consider the set \mathcal{C} of all smooth curves c in the plane joining p to q and parametrized on the interval $[a, b]$. Then the length functional L is $L: \mathcal{C} \rightarrow \mathbb{R}$ given by

$$
L(c)=\int_{a}^{b}\left\|c^{\prime}\right\| d t
$$

If we further assume that c is the graph of a function $y=c(t)$ joining the points $p=(a, c(a))$ to $q=(b, c(b))$, then L can be written as

$$
L(c)=\int_{a}^{b} \sqrt{1+\left(c^{\prime}\right)^{2}} d t
$$

To find the shortest curve joining p to q, we would like to "differentiate L with respect to c " and set the result equal to 0 to find the "critical curves" which we hope are minimums or shortest curves (geodesics).

Here is the general framework in which to do this. Consider a suitably differentiable function $F: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, given by $F(t, x, y)$. We wish to find the maxima/minima of the functional

$$
J(c)=\int_{a}^{b} F\left(t, c(t), c^{\prime}(t)\right) d t
$$

(To get the length functional, let $F=\sqrt{1+y^{2}}$.)
Now we consider a variation of c with endpoints fixed, that is, a function

$$
\alpha:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow \mathbb{R}
$$

such that $\alpha(0, t)=c(t)$ and $\alpha(u, a)=p$ and $\alpha(u, b)=q$ for all $u \in(-\varepsilon, \varepsilon)$. Note that for fixed $u=u_{0}, \alpha\left(u_{0}, t\right)$ is just a curve joining p to q. See the picture. As u varies we get a family of curves which "pass through" c when $u=0$. Denote the u-th curve by $\bar{\alpha}(u)$.

a) Now it's your turn to do some stuff. For a variation α, show that

$$
\begin{gathered}
\left.\frac{d}{d u}(J(\bar{\alpha}(u)))\right|_{u=0}=\left.\frac{d}{d u}\right|_{u=0} \int_{a}^{b} F\left(t, \alpha(u, t), \frac{\partial \alpha}{\partial t}(u, t)\right) d t \\
=\int_{a}^{b}\left[\frac{\partial \alpha}{\partial u}(0, t) \frac{\partial F}{\partial x}\left(t, c(t), c^{\prime}(t)\right)+\frac{\partial^{2} \alpha}{\partial u \partial t}(0, t) \frac{\partial F}{\partial y}\left(t, c(t), c^{\prime}(t)\right)\right] d t
\end{gathered}
$$

Since mixed partials are equal, $\frac{\partial^{2} \alpha}{\partial u \partial t}=\frac{\partial^{2} \alpha}{\partial t \partial u}$, apply integration by parts to the second term in the integrand and use the fact that endpoints are fixed to conclude

$$
\left.\frac{d}{d u}(J(\bar{\alpha}(u)))\right|_{u=0}=\int_{a}^{b} \frac{\partial \alpha}{\partial u}(0, t)\left[\frac{\partial F}{\partial x}\left(t, c(t), c^{\prime}(t)\right)-\frac{d}{d t}\left(\frac{\partial F}{\partial y}\left(t, c(t), c^{\prime}(t)\right)\right)\right] d t
$$

b) Thus critical points of J correspond to curves c with

$$
\frac{\partial F}{\partial x}\left(t, c(t), c^{\prime}(t)\right)-\frac{d}{d t}\left(\frac{\partial F}{\partial y}\left(t, c(t), c^{\prime}(t)\right)\right)=0
$$

This is called the Euler-Lagrange equation of the functional J. Use this to show that straight lines are critical points of the length functional $L .\left(F(t, x, y)=\sqrt{1+y^{2}}\right.$.) To show these are actually minima we would have to compute the second derivative of J with respect to u and use the second derivative test. This can be done, but is a big mess!
c) Suppose now that you wanted to find a curve c given as a graph $y=c(t)$ over $[a, b]$, for which the surface of revolution obtained by rotating c about the t-axis has minimal area amongst all curves joining $(a, c(a))$ to $(b, c(b))$. To make the problem interesting we assume that $c(t)>0$ on $[a, b]$. This will give a so-called minimal surface of revolution.
i) What should the function F be so that the corresponding functional J represents the area of the surface of revolution?
ii) Deduce that a curve c that generates a minimal surface of revolution satisfies the non-linear differential equation

$$
1+\left(\frac{d c}{d t}\right)^{2}-c(t)\left(\frac{d^{2} c}{d t^{2}}\right)=0
$$

iii) Miraculously, this differential equation has a closed form solution since the independent variable t is missing. The technique is to let $v=\frac{d c}{d t}$. Then $\frac{d^{2} c}{d t^{2}}=\frac{d v}{d t}=\frac{d v}{d c} \frac{d c}{d t}=v \frac{d v}{d c}$. This converts the given ODE to a separable first-order ODE. Solve it, get another separable ODE, and solve that
to find the solution $c(t)$. It turns out that the solution to this differential equation can be rewritten as $c(t)=C \cosh \left(\frac{t+K}{C}\right)$, where C and K are constants determined by initial conditions. The resulting surfaces are called catenoids.

