
Math 404 Special Homework 2 Name:

To receive full credit, you must show all work.

Question 1 This is exactly problem 11 from section 2.2 in the book. Prove that a straight line is
the shortest curve that joins two points in R3. Do this the following way: Let c : [a, b]→ R3 be an
arbitrary curve from p = c(a) to q = c(b). Let u = (q− p)/‖q− p‖.

a) Show that if σ is a straight line segment from p to q, say σ(t) = (1− t)p+ tq, 0 ≤ t ≤ 1, then
L(σ) = d(p, q).

b) Cauchy-Schwartz implies that ‖c′‖ ≥ c′ · u. Use this to deduce that L(c) ≥ d(p, q).
c) Show that if L(c) = d(p, q), then c is a straight line segment.

Question 2 Now we are going to investigate the same problem using the calculus of variations.
Very often in math or physics, one is interested in minimizing or maximizing a functional. For our
purposes a functional F will be a function from some set of functions to R. These are often given
by integrals. For example, consider the set C of all smooth curves c in the plane joining p to q and
parametrized on the interval [a, b]. Then the length functional L is L : C → R given by

L(c) =

∫ b

a

‖c′‖ dt

If we further assume that c is the graph of a function y = c(t) joining the points p = (a, c(a)) to
q = (b, c(b)), then L can be written as

L(c) =

∫ b

a

√
1 + (c′)2 dt

To find the shortest curve joining p to q, we would like to “differentiate L with respect to c” and
set the result equal to 0 to find the “critical curves” which we hope are minimums or shortest curves
(geodesics).

Here is the general framework in which to do this. Consider a suitably differentiable function
F : R× R× R→ R, given by F (t, x, y). We wish to find the maxima/minima of the functional

J(c) =

∫ b

a

F (t, c(t), c′(t)) dt

(To get the length functional, let F =
√

1 + y2.)
Now we consider a variation of c with endpoints fixed, that is, a function

α : (−ε, ε)× [a, b]→ R

such that α(0, t) = c(t) and α(u, a) = p and α(u, b) = q for all u ∈ (−ε, ε). Note that for fixed
u = u0, α(u0, t) is just a curve joining p to q. See the picture. As u varies we get a family of curves
which “pass through” c when u = 0. Denote the u–th curve by α(u).
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a) Now it’s your turn to do some stuff. For a variation α, show that
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Since mixed partials are equal,
∂2α

∂u∂t
=

∂2α

∂t∂u
, apply integration by parts to the second term in

the integrand and use the fact that endpoints are fixed to conclude
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b) Thus critical points of J correspond to curves c with
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This is called the Euler-Lagrange equation of the functional J . Use this to show that straight lines
are critical points of the length functional L. (F (t, x, y) =

√
1 + y2.) To show these are actually

minima we would have to compute the second derivative of J with respect to u and use the second
derivative test. This can be done, but is a big mess!
c) Suppose now that you wanted to find a curve c given as a graph y = c(t) over [a, b], for which the
surface of revolution obtained by rotating c about the t–axis has minimal area amongst all curves
joining (a, c(a)) to (b, c(b)). To make the problem interesting we assume that c(t) > 0 on [a, b]. This
will give a so-called minimal surface of revolution.

i) What should the function F be so that the corresponding functional J represents the area of
the surface of revolution?

ii) Deduce that a curve c that generates a minimal surface of revolution satisfies the non-linear
differential equation

1 +

(
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dt

)2

− c(t)
(
d2c

dt2

)
= 0

iii) Miraculously, this differential equation has a closed form solution since the independent

variable t is missing. The technique is to let v =
dc

dt
. Then

d2c

dt2
=
dv

dt
=
dv

dc

dc

dt
= v
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dc
. This converts

the given ODE to a separable first-order ODE. Solve it, get another separable ODE, and solve that



to find the solution c(t). It turns out that the solution to this differential equation can be rewritten

as c(t) = C cosh

(
t+K

C

)
, where C and K are constants determined by initial conditions. The

resulting surfaces are called catenoids.


